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Rehinging biflagellar locomotion in a viscous fluid
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A means of swimming in a viscous fluid is presented, in which a swimmer with only two links rotates around
a joint and then rehinges in a periodic fashion in what is here termed rehinging locomotion. This two-link rigid
swimmer is shown to locomote with an efficiency similar to that of Purcell’s well-studied three-link swimmer,
but with a simpler morphology. The hydrodynamically optimal stroke of an analogous flexible biflagellated
swimmer is also considered. The introduction of flexibility is found to increase the swimming efficiency by up
to 520% as the body begins to exhibit wavelike dynamics, with an upper bound on the efficiency determined

by a degeneracy in the limit of infinite flexibility.
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I. INTRODUCTION

Reciprocal motions are not effective means of locomotion
in highly viscous fluids, a result known as the Scallop theo-
rem, which is so named because of the sole reciprocal mo-
tions available to a scallop (opening and closing) [1]. For
example, the flapping of a rigid wing is reciprocal and has
been shown to generate locomotion only if the frequency
Reynolds number is above a critical value of order one
[2-4]. Given such limitations on reciprocal motions, micro-
organisms locomote by nonreciprocal undulations, frequently
driving themselves with flagella, cilia, or other obtrusions.
An overview of ciliary and flagellar fluid mechanics is pro-
vided by Lighthill [5] and excellent reviews are presented in
[6,7].

Swimming at low Reynolds numbers has recently been a
topic of active interest, in part due to an improved ability to
visualize micro-organismic motility [8—10], but also due to
the potential for engineering solutions in the field of medi-
cine. An understanding of simple and effective means of pro-
pulsion at very small scales may soon lead to the develop-
ment of microswimmers, which can be used for drug
delivery, image transmission, and minimally invasive surgi-
cal techniques [11]. Biomimetic swimming devices powered
by mechanical “flagella” have recently been constructed and
studied [12-15]. However, such engineered microswimmers
need not be biologically inspired. Other possible swimmers
that have been proposed include a three-mass system [16], a
deformable two-dimensional (2D) loop [17], a surface-
treadmilling torus [1,18,19] or ellipsoid [20], and Purcell’s
three-link swimmer [1]. The last-named is constructed by
connecting three rigid links by two hinges, leaving two free
ends. The body achieves a positive mean velocity by rotating
the two outer links in a nonreciprocal pattern.

Jung et al. [21] showed by experiment and numerical
simulation the existence of periodic sedimentation orbits for
a wide range of body types. These periodic orbits hint at a
new idea for a simple means of locomotion in highly viscous
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fluids, one which is in some sense simpler than the mecha-
nisms mentioned above and should provide excellent path-
stability properties over long distances: a swimmer with only
two links, alternatingly connected by two different hinges in
what will be referred to as rehinging locomotion. The basic
motion is illustrated in Fig. 1(a) for a body with link lengths
L. The two links rotate around a hinge on the left (steps 1
and 2), and the connection joint between them moves to the
right. Eventually the free ends come into contact (3), at
which point they lock together while the original hinge un-
locks (4). The previously connected ends become the new
free ends, and steps (1)—(4) are repeated.

In this paper the swimming dynamics of a rehinging body
is considered. The effects of flexibility are explored by in-
creasing the number of links in a more general rehinging
biflagellar swimmer, as illustrated in Figs. 1(b) and 1(c). The
addition of flexibility is shown to increase the swimming
efficiency by up to 520% as the body begins to exhibit wave-
like dynamics, with an upper bound on the efficiency deter-
mined by a degeneracy in the limit of infinite flexibility.

II. KINEMATICS AND FLUID-BODY INTERACTION

We present the equations of motion for the general bi-
flagellar swimmer of Fig. 1(b), of which the two-link rehing-
ing swimmer is a simple (rigid) subset. The upper filament is
labeled S; and we assume that the lower filament S, is at all
times the mirror image of S; about the x axis. Both filaments
have length L, and the connecting joint, or hinge, is assumed
to be massless. The position of a point on S, is denoted by

X(s,1) = x(1)2 + x(s,2) = [x0(t) + x(s5,0) ]2 + y(s5,0)9, (1)

where s € [0,L] is the arc length, 7 is time, x((7) is the hori-
zontal position of the hinge, and x(s,7)=x(s,1)X+y(s,1)y de-
scribes the body shape. A period of motion is denoted by 7
=T. The body velocity at a material point X(s,?) is

X(s.0) = Up(0)2 +x/(s.1), 2)

where U,(t)=x,(1) is the horizontal velocity of the connect-
ing hinge. The assumption of symmetric flagellar motion for
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FIG. 1. (a) A rehinging two-link swimmer undergoes one period of motion and travels a distance of approximately L/4. After each stroke
the (massless) hinge slides from one end to the other, and the motion repeats. (b) The general up-down symmetric biflagellar swimmer and

parametrization. (¢) A four-link swimmer (M=2).

the filaments S| and S, ensures that the hinge’s vertical ve-
locity and the net body rotation are always zero. The initial
and final body positions (before rehinging) require [see Fig.

1(a)]

x(L,0) =x(L,0)% + y(L,0)y = L%, (3)

X(L,T) = x(L, )% + y(L,T)§ = - L. (4)

The body is assumed to locomote in the Stokesian regime,
where viscous dissipation dominates any inertial effects. The
fluid-body interactions are modeled using the local resistive
force theory developed by Gray and Hancock [22]. Resistive
force theory relates the local fluid force per unit length and
the local fluid-body velocity (equivalent by the assumption
of a no-slip boundary condition). In the classical theory, the
force per unit length f(s,7) relates to the local velocity at
leading order in the body aspect ratio e<<1 via

27T
In(2/€)

£(s,1) = (21-$8")X(5,1), (5)
where §=(x,,y,) is the unit tangential vector on S;. With no
external forcing, the dynamics are thus set by conditions en-
suring zero net force and zero net torque on the body at all

times,

L L
J f(s,t)ds =0, f x(s,1) X £(s,1)ds = 0. (6)

0 0

The fluid stress is decomposed as f(s,7)] s, =f(s,1)
=.f1(S, t).£'+f2(S, t)yA on Sl’ and f(S,t) |sz=f1 (S,t)XA—fz(S,t)yA on
S, by symmetry. Writing the horizontal component of force
in terms of the velocity in Eq. (2), we have

2T
In(2/€)

fils.0)= {2=DMUD +x] = ey (D)

The zero net vertical force and zero net torque conditions
are satisfied automatically by the body’s up-down symmetry.
The only remaining constraint on the motion, therefore, is

zero net horizontal force,

L
f fi(s,0)ds = 0. (8)
0

Inserting Eq. (7) into the above yields the translational
velocity of the connecting hinge,

[

=Uy(1) =

2 = XD)[Uy(1) +x,] = (x,,)y,ds =0 )

Sy )y, = (2 = x)xds
I 6(2 - xf)ds

(10)

Hence, a prescription of the body shape x(s,?) is sufficient to
set the swimming velocity Uy(z), and time enters only as a
parameter. Using Eq. (10), the velocity of the rehinging two-
link swimmer is found by setting x=s cos[6,(r)] and y
=s sin[ 6,(r)]. Inertia plays no role in the low Reynolds num-
ber regime, so that opening and/or closing in one direction
faster than the other has no effect on the net motion; only the
body geometry is important. Without loss of generality the
connection angle between S; and S, is assumed to grow lin-
early in time, 0,(¢r)=rt/T. To compute the distance traveled
after one stroke, we monitor s=L/2 (the midpoint of S,), the
sole point on §; that does not change spatial position upon
body rehinging. Using Eq. (10), the hinge velocity is
sin(7rt/T)
Uor) = T 2—cos’(mt/T)’ (1)

so that the distance traveled by the midpoint after one stroke,
AX, is

=T 1 - ! L
AX = Uo(t) +x,| =,t|dt=\2Ltanh™' | = | - L~ —.
=0 2 V2 4
(12)

Hence, the body travels one body length in approximately
four periods of rehinging motion. The distance traveled by
the connecting hinge (s=0) prior to rehinging, approximately
5L/4, is also derived by Becker et al. [23] as a launching
point to study Purcell’s three-link swimmer. On the scale of a
spermatozoan, L~ 1072 cm, T~1 s, and the maximal hinge
velocity is ||Up|l..=7L/(2T) ~107% cm/s [25].

III. OPTIMIZING THE GENERAL M-LINK SWIMMER

To consider the effects of increased flexibility, we con-
sider bodies with M links on each flagellar filament S; (i
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=1,2). A four-link rehinging swimmer (M=2) is illustrated
in Fig. 1(c). The kth link is oriented with angle 6,(¢) to the
horizontal, and the upper-half of the body (S;) is defined
piecewise linearly,

L (k= 1)L
x;(s,1) =Xk—1(ﬂ,l) + (s— T)

=5=—

M M
(13)

X{(cos G(1),sin 6,(1)) ((k_ DL kL),

with xo(L/M ,1)=0, and k=1,2,...,M. The initial and final
conditions for a single stroke are written in terms of the
angles as 6,(0)=0, 6,(T)=m for all k. Each of the angles is
expanded in a Fourier basis in time,

(14)

0,(1) = 77(%) +, Qrn sin(n—;n).

n=1

A deviation angle is defined as 6,(r)=6,(r)—#(t/T). In the
Stokesian regime, time can always be re-scaled so that
0,(1)=mt/T without loss of generality (a;,=0). The case
ay,,=0 for all k corresponds to a broad flat stroke, equivalent
to the only possible stroke in the two-link case (M=1). The
expression for the angles 6,(r) is truncated by keeping only
the first N Fourier modes.

Using Eq. (10) as before, an expression for the swimming
velocity may be derived,

M
> Py

Ul = (%) s L)
2M - ) cos*[6,(1)]
k=1
where
k=1
P, =sin[0,(1)]6,(z) + > [cos 6 (1)sin G (r)cos 6,(t)
=1
+{2 - cos’[ 6,(1) I}sin 0,(1)16(z). (16)

Equation (13) is used along with the above expression for
the swimming velocity to determine the force f(s,#) via Eq.
(5). The hydrodynamic efficiency is defined using a measure
&, which has been used by many authors, a ratio of the power
required to drag the swimmer in its straightened configura-
tion (two filaments of length L) at its average speed to the
average power exerted mechanically against viscosity over a
single stroke ([23-26]),

| 4muLV?
5—[ In(2/e) }/[2<<I>>], (17)
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L
D(r) =f x,(s,t) - f(s,2)ds
0

2T L

- In(2/¢) J,

x,(5,1) - QI = 88D [Uo(0)% + x,(5,1) 1ds.

(18)

®(r) is the mechanical power applied by each filament S;,
2(d) is the total time-averaged power exerted over a full
stroke, and V is the average horizontal velocity of the mid-
point s=L/2, V=(Uy(t))—L/T. The efficiency so defined is
independent of the aspect ratio e.

To compute the efficiency for an arbitrary stroke form, the
mechanical power and swimming velocity are determined at
times corresponding to Gaussian quadrature nodes on the
interval t € [0,T] (see [27]). Time averages of the quantities
necessary to compute the efficiency are in this way deter-
mined to high accuracy with very few time steps. The hydro-
dynamically optimal body morphology is found by using an
SQP Quasi-Newton line search method built into the MATLAB
optimization toolbox. The coefficients a, are the adjustable
degrees of freedom, and are determined numerically such
that the efficiency £ is maximized. Constraints on the Fourier
modes were included to avoid solutions in which the body
intersects itself. Any station s crossing the x axis ensures an
intersection event due to the mirror symmetry of the body, so
to avoid such an event we required

> sin[6,()]>0 (19)
i=1

for all m e[1,M] and for each time 7 at which the velocity
and efficiency were computed. This constraint was found to
be sufficient in practice. Many initial guesses were inserted
into the optimization search to increase the likelihood that a
global optimum was found, but the results reported here
were found to be robust.

Results

Under the efficiency measure £ defined above, the two-
link (rigid) swimmer is found to be less efficient than some
other forms of Stokesian locomotion; Egs. (10) and (17) re-
turn an efficiency of £=.0165. This compares unfavorably to
more complicated structures such as the undulating filaments
and helical swimmers (£=0.086) presented in [24]. How-
ever, Purcell’s three-link swimmer as studied in [23] has an
efficiency of £=0.007, and further optimizations of the Pur-
cell stroke by Tam and Hosoi [26] and then Raz and Avron
[28] have allowed for efficiencies in extreme cases up to &
=0.0208. The rehinging two-link swimmer is on par with this
similar means of locomotion, but is far simpler in structure
than the Purcell swimmer.

The efficiency increases dramatically when the numbers
of links and Fourier modes for each angle 6,(r) are increased.
The optimal stroke in the four-link case (M=2) using the
first N=80 Fourier modes is shown in Fig. 2(a), along with a

plot of the deviation angle 6,(7) as a function of time. Arrows
indicate the direction of motion of the hinge. The outer seg-
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FIG. 2. (Color online) (a) The optimal profile of the deviation angle 6()=6,(t)—t/T for a four-link swimmer (M =2) using the first
N=280 Fourier modes is shown, along with the body configuration at times #/7=0.2, t/T=0.5, and ¢/T=0.8. The resulting efficiency is £
=0.0210, a 28% increase in efficiency over the two-link (rigid) swimmer. (b) The even-numbered Fourier coefficients for a four-link
swimmer are shown on a logarithmic scale; the modes are found to decay as a29n~n_3 (inset: linear scale).

ments lead the inner segments for ¢ € (0,7/2), while the op-
posite is true for t € (T/2,T). The drag anisotropy of slender
filaments is utilized by this more “flexible” body as it in-
creases the surface material, which is presented to the fluid at
each stage of the stroke. The consequence is an improved
efficiency of £=0.0210, a 28% increase over the two-link
swimmer. The optimal stroke is found to be symmetric about
the half-period, t=7/2, with a, ,=0 for n odd. This symme-
try is not assumed a priori, but is the result of the numerical
optimization. The (even-numbered) Fourier modes a,, are
presented in Fig. 2(b). The modes decay like az’,,~n‘j, im-
plying that the angle 6,(¢) limits as N—o to a function
which is twice, but not many times differentiable.

By introducing more links, the optimized stroke form be-
comes even more efficient, and the body begins to resemble
two smooth flagella. The optimal stroke form for an eight-
link swimmer (M =4) found using the first 40 Fourier modes
(N=40) is shown in the first panel of Fig. 3. In an extension

of the dynamics exhibited by the four-link swimmer, the seg-
ments near the free ends are able to present more surface
material to the fluid both earlier and later in the stroke than
the two-link rigid body. The corresponding efficiency is £
=0.0268, a 63% improvement over the two-link swimmer.
The deviation angles for the eight-link (M=4) swimmer are
shown in Fig. 4(a). As expected, the end segments (k=M)
are found to experience the largest deviation from the rigid
dynamics. However, the second angle 6,(r) is observed to
undergo an unexpected deviation from rigid motion; the cur-
vature at the second joints (k=2) are opposite in sign to the
curvature on the rest of the flagellar lengths for the bulk of
the stroke. In order to better explain this puzzling cavity, we
proceed to consider even more flexible bodies.

The second and third panels of Fig. 3 show the optimal
20-link (£=0.0363) and 48-link (£=0.0426) stroke forms, as
determined for N=40 Fourier modes. The added flexibility
not only allows for the presentation of more material to the

I
> S
-

S5 om0 ——

FIG. 3. (Color online) Stroke forms of the optimal eight-link, 20-link, and 48-link swimmers are shown at equally spaced times in
t/T €[0,1] (in multiples of /T=0.05). Solutions are determined using the number of Fourier modes N as indicated. Increasing flexibility not

only allows the body to present more material to the fluid, but also

allows for the passage of waves down along the body length at the

beginning and end of the stroke. (The actual distance traveled is not depicted.)
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FIG. 4. (Color online) The deviation angles are presented for the eight-link (a) and 20-link (b) cases [ 6,(f) = 6,(t) — 71/ T]. An unexpected
cavity in the first case is made more clear in the second: the passage of a wave from the tail toward the hinge is observed in the more flexible
body for /T € (0,0.2), and in the opposite direction for ¢/T € (0.8,1).

fluid, but in fact allows for the passage of waves down along
the body length during the early and late stages of the stroke.
At early times the end segments begin to “unzip” while si-
multaneously a small protrusion develops on the body’s in-
ner segments. The protrusion moves from the flagellar ends
toward the hinge during the early part of the stroke, and from
the hinge toward the ends during the final part of the stroke.
Both waves move to the left, and therefore both generate a
swimming motion to the right [29]. The unexpected curva-
ture variation observed in the M =4 case is hence explained
as the early development of wavelike dynamics for semiflex-
ible biflagellar locomotion.

The deviation angles for the 20-link (M=10) swimmer
are shown in Fig. 4(b). The unzipping of the end segments as
the stroke begins is seen here as a wave traveling from the

last deviation angle 6,, toward the inner segments for /T
€ (0,0.2). Simultaneously, a second wave of opposite sign is
also seen passing toward the inner segments, beginning with

a small negative deviation in 6. This second wave corre-
sponds to the protrusion wave discussed above. The opposite
waves are exhibited near the end of the stroke from #/T
€(0.8,1).

If the number of Fourier modes N is increased, the body
can express behavior even closer to that of an undulating
filament. The fourth panel of Fig. 3 shows the optimal swim-
mer again for the 48-link body, but now using the first N

t<T/2

(a)

N (Fourier Modes)

=80 Fourier modes. A second protrusion wave beyond that
seen in the N=40 case is apparent at early times, and in fact
a third wave communicates with the already unzipped parts
of the body which propagate toward the left. With the body
taking on more wavelike dynamics with increasing flexibil-
ity, we are led to the result that there is a degeneracy in the
limit of infinite flexibility (M,N— ). The hydrodynami-
cally optimal infinitely flexible rehinging swimmer takes on
the dynamics of two undulating slender filaments, as illus-
trated in Fig. 5(a). At zero Reynolds number, with time en-
tering into the dynamics only as a parameter, the body can
pass undulatory waves along the two filaments S; at arbi-
trarily large speeds compared to the fundamental motion of
the innermost angle. With the exception of an arbitrarily
short time where the body reorients from ends-right to ends-
left, the optimal swimmer behaves no different than an infi-
nite swimming filament as presented by Lighthill, which for
planar waves takes the shape of a sawtoothed wave with
tangent angle everywhere approximately equal to 40° [24].
Thus an upper bound on the efficiency of rehinging locomo-
tion is that of the infinite undulating filament, £=0.086, or
520% of the two-link rigid rehinging swimmer. Moreover,
degenerate solutions are also expected for N—o and M
=3 (finite). For example in the M =3 case, with no other
constraints on the relative speeds of angular motions, the last
two links on each filament can undergo power and recovery
strokes infinitely many times before the first link has com-

M (Links)

FIG. 5. (Color online) (a) The degenerate infinitely flexible solution: the body takes on the morphology of a pair of undulating slender
filaments with wave speeds much faster than the rotating motion of the innermost angle. The optimal infinitely flexible planar waves are
sawtoothed with tangent angle everywhere equal to approximately 40° [24]. Arrows with dashed lines indicate wave direction, arrows with
solid lines the net swimming direction. (b) The efficiency £ is shown as a function of the number of links M and Fourier modes N.
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FIG. 6. (Color online) (a) The hinge velocity profiles are shown for a selection of segment numbers M, using N=40 Fourier modes. (b)

The mean hinge velocity as a function of segment numbers.

pleted its rotation (see [30]). The four-link body (M=2) is
too rigid to express such dynamics; at each time ¢ there are
no possible (infinitely fast) motions by the second link on
each filament, which result in a net swimming motion. This
degeneracy in the limit of infinite flexibility is considered
more directly by Spagnolie and Lauga [31].

Figure 5(b) shows the efficiency £ of the semiflexible
rehinging body as a function of the number of links and the
Fourier modes. The efficiency increases for both increased M
and N, as expected. (A more flexible body can always
“choose” to swim like a more rigid body, assuming the joint
locations on the former include those on the latter.) In each
dimension there are apparently diminishing returns, at least
for relatively small M, N: we find that dramatic efficiency
gains by the addition of flexibility are achieved early on, and
that further increases in the number of degrees of freedom
increase the propulsive efficiency at a decreasing rate. Figure
5(b) indicates that the addition of more links is more impor-
tant than the number of modes of angular motion in this
regime. These results may be encouraging for those wishing
to design such swimmers; large gains can be achieved
through relatively small adjustments to the two-link rigid
rehinging swimmer.

Figure 6(a) shows the velocity of the connecting hinge for
a selection of link numbers M, found using N=40 Fourier
modes. The hinge velocity is largest when the body is pre-
senting its largest surface area to the fluid at the half-period,
as can be seen in Fig. 3. The rest of the body acts as a wall
as the hinge passes through to the right, and the inner pro-
trusion waves begins to develop while the end segments un-
dergo the remaining part of the flexible stroke. In the limit of
infinite flexibility the wall is infinitely longer than the small-
est deformable body segment, so that the degenerate limit the
hinge can pass through with unbounded relative velocity.
The hinge velocity at the half-period t=7/2 is not quite
monotonic in the number of links. The hinge of the four-link
body (M=2) moves faster during the early and late stages of
the stroke, but slower at the half-period than in the two-link
rigid case (M=1). However, there is a general trend toward
increasing hinge velocities at the half-period past a small
number of segments.

The connecting hinge does not move unidirectionally in
every case. The hinge actually moves opposite the direction
of net motion for short times in the optimal 48-link body at

approximately #/7=0.2 and ¢/T=0.8, when the inner protru-
sion wave reaches the hinge, and again later when the final
protrusion wave is just beginning to develop (see Fig. 3).
Figure 6(b) shows the mean hinge velocity over one period.
The mean velocity increases dramatically as the number of
segments on each filament increases from M =1 to M =5, and
then for M > 35 appears to grow linearly to at least M =24, the
largest number of segments considered. It is possible that this
apparently linear growth may persist for M > 1; given the
degeneracy described above, there is no lower bound on ei-
ther the maximal or mean hinge velocities in the limit as M,
N— oo,

IV. CONCLUDING REMARKS

A means of swimming through a viscous fluid, rehinging
locomotion, has been introduced. The simplest, rigid case is
found to perform on par with more complex forms of loco-
motion, with an efficiency similar to the optimized three-link
swimmer of Purcell [1]. We have shown that the hydrody-
namic efficiency can be increased dramatically by increasing
the degrees of freedom in an analogous flexible system, and
that the optimal stroke form for semiflexible bodies involves
the onset of wavelike dynamics along the inner flagellar seg-
ments. An upper bound on the efficiency is set by the degen-
erate solution of two undulating filaments in the limit of
infinite flexibility.

In any real manifestation of flexible rehinging locomo-
tion, the degeneracy in the model presented here will be
removed by many possible physical considerations. For ex-
ample, we have neglected energetic costs associated with the
bending of the filaments, which are shown by Spagnolie and
Lauga [31] to remove a similar degeneracy in the swimming
of a single slender filament. In addition, the low Reynolds
number assumption breaks down as the undulatory waves
increase in speed, presenting another potential mollification
of the degeneracy in practical application.

The assumption of the applicability of resistive force
theory allowed for a simple analysis, but could be improved
upon significantly. The slender body theory of Keller and
Rubinow [32] and Johnson [33] shows that the next order
term in the asymptotic expansion for the velocity in terms of
the fluid stress is O(1), which is not well separated from the
O(In(e)) term in the resistive force theory for bodies of all
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but vanishing aspect ratio. In addition, resistive force theory
is certain to break down at the early and late stages of the
stroke considered here, when the upper and lower filaments
S; are in near contact. For very flexible bodies (M > 1), er-
rors so introduced are likely even more pronounced. How-
ever, for more rigid bodies the time window most relevant to
the propulsion is near the half-period of the stroke, so the
possible errors made during the early and late stages may not
be as detrimental to the results in these cases.

Finally, we note that the two-dimensional rehinging mo-
tion discussed here may be recovered in three dimensions
with a round flexible filament. A loop pulled tight to an el-
lipse with ellipticity =1 that hinges around a “joint” in the

PHYSICAL REVIEW E 80, 046323 (2009)

center approximates the 2D motion as discussed. Then, after
one such stroke, another 2D stroke is obtained by rotating in
the plane perpendicular to that of the first. Rehinging is un-
necessary in this case; the active pivot point of rotation on
the body acts as the hinge in the two-dimensional case.
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